Respuesta :

The value of 'x' with rational denominator =

[tex] \frac{4 \sqrt{3} }{3} [/tex]

Step-by-step explanation:

cos =

[tex] \frac{adjacent \: side}{hypotenuse} [/tex]

cos 30 =

[tex] \frac{ \sqrt{3} }{2} [/tex]

given triangle is a right- angled triangle.

from the triangle,

cost 30 =

[tex] \frac{adjacent \: side}{hypotenuse} \: \: = \: \frac{2}{x} [/tex]

[tex] \frac{ \sqrt{3} }{2} \: = \frac{2}{x} [/tex]

√3x = 4

[tex]x \: = \: \frac{4}{ \sqrt{3} } [/tex]

Rationalising the denominator we get,

x =

[tex] \frac{4}{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } [/tex]

x =

[tex] \frac{4 \sqrt{3} }{3} [/tex]

Therefore, the value of 'x' =

[tex] \frac{4 \sqrt{3} }{3} [/tex]

Otras preguntas