Answer:
[tex]\frac{x^{2} }{64} -\frac{y^{2} }{336} =1[/tex]
Step-by-step explanation:
The equation of hyperbola is given by:
[tex]\frac{x^{2} }{a^{2} } -\frac{y^{2} }{b^{2} }[/tex]
Where [tex]c^{2} =a^{2} +b^{2}[/tex]
∵ [tex]a=8,c=20[/tex]
∴ [tex]b^{2} =c^{2} -a^{2}[/tex]
⇒ [tex]b= \sqrt{20^{2} -8^{2} } =4\sqrt{21}[/tex]
Now, [tex]\frac{x^{2} }{a^{2} } -\frac{y^{2} }{b^{2} } =1[/tex]
⇒ [tex]\frac{x^{2} }{8^{2} } -\frac{y^{2} }{y(4\sqrt{21} )^{2} } =1[/tex]
⇒ [tex]\frac{x^{2} }{64} -\frac{y^{2} }{336} =1[/tex]
Hence, equation is [tex]\frac{x^{2} }{64} -\frac{y^{2} }{336} =1[/tex]
Hope this helps,
ROR