Respuesta :

Answer:

[tex]x=\frac{3\pi }{4} ,\frac{7\pi }{4}[/tex]

If wrong then [tex]x=-\frac{\pi }{4}.[/tex]

Step-by-step explanation:

[tex]tan^2(x)-tan(x)=0[/tex]

Factor out the tan(x).

[tex]tan(x)*(tan(x)-1)=0[/tex]

Solve for x.

[tex]tan(x)\neq 0\\[/tex] thus only option is tan(x)-1=0

[tex]tan(x)-1=0\\tan(x)=1\\[/tex]

x=tan^-1(1)⇒

Either it is Quadrant 2 or 4.

[tex]x=\frac{3\pi }{4} ,\frac{7\pi }{4}[/tex]

If the teacher says its wrong. Then that could only mean that its range of tan(x) is between [tex]-\frac{\pi }{2} < x < \frac{\pi }{2}[/tex] thus it's only on quadrant 4. [tex]x=-\frac{\pi }{4}[/tex]

Ver imagen andytran027