Answer:
[tex]x=\frac{3\pi }{4} ,\frac{7\pi }{4}[/tex]
If wrong then [tex]x=-\frac{\pi }{4}.[/tex]
Step-by-step explanation:
[tex]tan^2(x)-tan(x)=0[/tex]
Factor out the tan(x).
[tex]tan(x)*(tan(x)-1)=0[/tex]
Solve for x.
[tex]tan(x)\neq 0\\[/tex] thus only option is tan(x)-1=0
[tex]tan(x)-1=0\\tan(x)=1\\[/tex]
x=tan^-1(1)⇒
Either it is Quadrant 2 or 4.
[tex]x=\frac{3\pi }{4} ,\frac{7\pi }{4}[/tex]
If the teacher says its wrong. Then that could only mean that its range of tan(x) is between [tex]-\frac{\pi }{2} < x < \frac{\pi }{2}[/tex] thus it's only on quadrant 4. [tex]x=-\frac{\pi }{4}[/tex]