Respuesta :

Answer:

Below!

Step-by-step explanation:

Given square root:

[tex]\sqrt41[/tex]

Let's note a few perfect square roots.

[tex]1 = \sqrt{1 \times 1} = \sqrt{1}[/tex]

[tex]2 = \sqrt{2 \times 2} = \sqrt{4}[/tex]

[tex]3 = \sqrt{3 \times 3} =\sqrt{9}[/tex]

[tex]4 = \sqrt{4 \times 4} =\sqrt{16}[/tex]

[tex]5 = \sqrt{5 \times 5} =\sqrt{25}[/tex]

[tex]6 = \sqrt{6 \times 6} =\sqrt{36}[/tex]

[tex]7 = \sqrt{7 \times 7} =\sqrt{49}[/tex]

[tex]8 = \sqrt{8 \times 8} =\sqrt{64}[/tex]

And so on...

When looking at the perfect square roots we identified, we can say that:

[tex]\sqrt{36} < \sqrt{41} < \sqrt{49}[/tex]

Therefore,

[tex]6 < \sqrt{41} < 7[/tex]

We can conclude that [tex]\sqrt{41}[/tex] is between 6 and 7.

Let's check the squares of first 10 number

  • 1²=1
  • 2²=4
  • 3²=9
  • 4²=16
  • 5²=25
  • 6²=36
  • 7²=49
  • 8²=64
  • 9²=81
  • 10²=100

41 lies between 36 and 49

Hence

  • √41 lies in between 6 and 7