Hello ~
My name is Irxdscent, and I will be answering your question today! :D
[tex]\sf{(x_{1} \: - y_{1})[/tex]
[tex]\sf{S = x^2 \: + \: y^2 \: - \: 4x \: - \: 6y \: - \: 12 = 0}[/tex]
[tex]\sf{S_{1} = y^2 \: + \: y^2 \: + \: 6x \: + \: 18y \: + \: 26 = 0}[/tex]
[tex]\sf{P(x_{1}, \: y_{1}) \: is \: any \: point \: on \: the \: locus \: and \: PT_{1,} \: PT_{2} \: are \: the \: tangents \: from \: P \: to \: the \: two \: circles.[/tex]
[tex]\sf{3x^2 \: + \:3 y^2 \: - \: 12x \: - \: 18y \: - \: 36 = 2x^2 \: + \: 2y^2 \: + \: 12x \: + \: 36y \: + 52}[/tex]
[tex]\sf{x^2 \: + \: y^2 \: - \: 24x \: - \: 54y \: - \: 88 = 0}[/tex]
[tex]\sf{This \: is \: the \: locus \: P \: \sf{(x_{1} \: - y_{1})[/tex]
Hope It Helps! ~
~ Learn With Lrxdscent ~
[tex]\underline{Answer :}[/tex]
ɪ ʀ x ᴅ ꜱ ᴄ ᴇ ɴ ᴛ