Respuesta :
Since [tex](46,154)=(100-3\times18,100+3\times18)[/tex], you have
[tex]\mathbb P(46<X<154)=\mathbb P(-3<Z<3)\approx99.7\%[/tex]
Since [tex](-\infty,82)\cup(118,\infty)=(-\infty,100-1\times18)\cup(100+1\times18,\infty)[/tex], you have
[tex]\mathbb P((X<82)\cup(X>118))=\mathbb P(Z<1)+\mathbb P(Z>1)=1-\mathbb P(-1<Z<1)[/tex]
The empirical rule says that approximately 68% of a normal distribution falls within one standard deviation of the mean, you have
[tex]100\%-\mathbb P(-1<Z<1)\approx68\%\implies \mathbb P(-1<Z<1)\approx32\%[/tex]
Finally, since those with IQ greater than 118 comprise half of the above percentage (due to the distribution's symmetry), you have
[tex]\mathbb P(Z>1)\approx50\%\times32\%=16\%[/tex]
[tex]\mathbb P(46<X<154)=\mathbb P(-3<Z<3)\approx99.7\%[/tex]
Since [tex](-\infty,82)\cup(118,\infty)=(-\infty,100-1\times18)\cup(100+1\times18,\infty)[/tex], you have
[tex]\mathbb P((X<82)\cup(X>118))=\mathbb P(Z<1)+\mathbb P(Z>1)=1-\mathbb P(-1<Z<1)[/tex]
The empirical rule says that approximately 68% of a normal distribution falls within one standard deviation of the mean, you have
[tex]100\%-\mathbb P(-1<Z<1)\approx68\%\implies \mathbb P(-1<Z<1)\approx32\%[/tex]
Finally, since those with IQ greater than 118 comprise half of the above percentage (due to the distribution's symmetry), you have
[tex]\mathbb P(Z>1)\approx50\%\times32\%=16\%[/tex]
[tex]99.7[/tex]% of people has an IQ score between [tex]46[/tex] and [tex]154[/tex].
[tex]32[/tex]% of people has an IQ scores less than [tex]82[/tex] or greater than [tex]118[/tex].
[tex]16[/tex]% percentage is greater than [tex]118[/tex].
A) Mean [tex]= 100[/tex]
Standard deviation [tex]= 18[/tex]
IQ between [tex]46[/tex] and [tex]154[/tex]
For [tex](46,154) = (100-3\times 18, 100+3\times 18)[/tex]
[tex]P(46<X<154)[/tex]
[tex]=P(-3<Z<3) \approx 99.7%[/tex]%
B)
[tex](-\infty, 82)U(118, \infty)=(-\infty, 100-1\times 18)U(100+1\times 18, \infty)[/tex]
[tex]P((X<82)U(X>118))=P(Z<1)+P(Z>1)[/tex]
[tex]=1-P(-1<Z<1)[/tex]
According to the empirical rule, approximately [tex]68[/tex]% of a normal distribution falls within one standard deviation of the mean
[tex]100[/tex]%[tex]-P(-1<Z<1)\approx 68[/tex]%
[tex]P(-1<Z<1)\approx 32[/tex]%
C)
Now, since those with IQ greater than [tex]118[/tex] comprise half of the above percentage (due to the distribution's symmetry),
[tex]P(Z>1)\approx 50[/tex]% [tex]\times 32[/tex]% [tex]=16[/tex]%
Learn more about mean, standard deviation here :https://brainly.com/question/14720855?referrer=searchResults
