Respuesta :

Since the point lies on the unit circle, its distance from the origin is 1.

So,

[tex]\sin\theta=\dfrac{\frac{\sqrt7}3}1=\dfrac{\sqrt7}3[/tex]

which means

[tex]\csc\theta=\dfrac1{\sin\theta}=\dfrac3{\sqrt7}[/tex]

Answer:

csc (θ) = 3/ sqrt(7)

sin(θ)= sqrt(7)/3

Step-by-step explanation:

The point (x,sqrt7/3) in the second quadrant corresponds to angle θ on the unit circle.

The point (x,y) on the graph represents (cos theta, sin theta)

Given point is [tex](x,\frac{\sqrt{7} }{3} )[/tex]

cos(θ) =x

sin(θ)= sqrt(7)/3

csc (θ) is the inverse of sin(θ)

So csc (θ) = 3/ sqrt(7)