write the slope intercept form of the equation of the line described
through (-4,-5) perpendicular to y=-2x+5
steps please but not too long though

Respuesta :

Answer:

[tex]\sf y=\dfrac12x-3[/tex]

Step-by-step explanation:

If two lines are perpendicular, the product of their slopes is -1.

The slope of the given equation is -2, so the slope of the line perpendicular to it is [tex]\sf \dfrac12[/tex] as [tex]\sf -2 \times \dfrac12=-1[/tex]

Point-slope formula:  [tex]\sf y-y_1=m(x-x_1)[/tex]

(where m is the slope and [tex]\sf (x_1,y_1)[/tex] is a point on the line)

Given:

  • [tex]\sf m=\dfrac12[/tex]
  • [tex]\sf (x_1,y_1)=(-4,-5)[/tex]

Substitute the given values into the formula:

[tex]\sf \implies y-(-5)=\dfrac12(x-(-4))[/tex]

[tex]\sf \implies y+5=\dfrac12x+2[/tex]

[tex]\sf \implies y=\dfrac12x-3[/tex]

  • y=-2x+5

Compare to slope intercept form y=mx+b

  • Slope=m=-2

Slope of the Perpendicular line 1/2

  • Passing through (-4,-5)

Equation in point slope form

[tex]\\ \rm\rightarrowtail y+5=1/2(x+4)[/tex]

[tex]\\ \rm\rightarrowtail y=1/2x+2-5[/tex]

[tex]\\ \rm\rightarrowtail y=1/2x-3[/tex]