This is getting more difficult!

The equation [tex]y = x^2 - 8x + 3[/tex] is an illustration of a quadratic equation
The vertex of the quadratic equation [tex]y = x^2 - 8x + 3[/tex] is (4,-13)
The equation is given as:-
[tex]y = x^2 - 8x + 3[/tex]
A quadratic equation is represented as:
[tex]y = ax^2 + bx + c[/tex]
By comparison, we have:
a = 1; b = -8; c = 3
The x-coordinate of the vertex is:
[tex]x = -\frac b{2a}[/tex]
So, we have:
[tex]x = \frac 8{2*1}[/tex]
[tex]x = 4[/tex]
Substitute 4 for y in [tex]y = x^2 - 8x + 3[/tex]
[tex]y = 4^2 - 8 * 4 + 3[/tex]
[tex]y = -13[/tex]
When x = 2 and 3, we have:
[tex]y = 2^2 - 8 * 2 + 3 = -9[/tex]
[tex]y = 3^2 - 8 * 3 + 3 = -12[/tex]
When x = 5 and 6, we have:
[tex]y = 5^2 - 8 * 5 + 3 = -12[/tex]
[tex]y = 6^2 - 8 * 6 + 3 = -9[/tex]
So, the table of values is:
x y
2 -9
3 -12
4 -13
5 -12
6 -9
Read more about quadratic functions at:
https://brainly.com/question/18797214