Respuesta :
Step-by-step explanation:
Define variables: let the numbers be x and y
Write a system: 3x-y=-3
x+y=11
Solve: Add both numbers to eliminate y
4x=8
x=2
Plug x=2 into the second equation
2+y=11
y=11-2=9
Solution sentence: the values are 2 and 9
Answer:
- 2 and 9
[tex] \\ [/tex]
Step-by-step explanation:
It is given that, three times a number minus a different number is equal to -3 and the sum of the numbers is 11 and we are to find the numbers.
[tex] \\ [/tex]
- Let us assume the numbers as a and b .
Three times a minus a different number is equal to -3 :
[tex]{\longrightarrow \pmb{\sf {\qquad 3a-b=-3 \:...... \: (i)}}} \\ \\[/tex]
The sum of the numbers is 11.
[tex]{\longrightarrow \pmb{\sf {\qquad a + b=-11 \:...... \: (ii)}}} \\ \\[/tex]
Adding equation (i) and (ii) :
[tex] \\ {\longrightarrow \pmb{\sf {\qquad 3a-b + (a + b)=-3 + 11 }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad 3a \: \: \cancel{-b }+ a + \cancel b=8 }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad 4a =8 }}} \\ \\[/tex]
Dividing both sides by 4 :
[tex] \\ {\longrightarrow \pmb{\sf {\qquad \frac{4a}{4} = \frac{8}{4} }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad a =2 }}} \\ \\[/tex]
Now, Substituting the value of a in equation (ii)
[tex]{\longrightarrow \pmb{\sf {\qquad a + b=11 }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad 2 + b=11 }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad b=11 - 2 }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad b=9 }}} \\ \\[/tex]
Therefore,
- The two numbers are 2 and 9