Respuesta :

Answer:

c.  0.219

Step-by-step explanation:

If the coin is fair, then the probability of flipping a head is 1/2 = 0.5

Therefore, we can model this as a binomial distribution:

X ~ B(n, p) where n is the number of events and p is the probability of success

Given:

  • n = 8
  • p = 0.5

X ~ B(8, 0.5)

Using a calculator:

P(X = 5) = 0.21875 = 0.219 (3 dp)

Using the formula:

[tex]\sf P(X=x)=\dfrac{n!}{(n-x)!x!}p^x(1-p)^{n-x}[/tex]

(where n is the number of events, x is the number of desired successes and p is the probability of success)

[tex]\sf \implies P(X=5)=\dfrac{8!}{(8-5)!5!}0.5^5(1-0.5)^{8-5}[/tex]

[tex]\sf \implies P(X=5)=\dfrac{8!}{3!5!}0.5^50.5^3[/tex]

[tex]\sf \implies P(X=5)=56 \cdot 0.5^8[/tex]

[tex]\sf \implies P(X=5)=56 \cdot \dfrac{1}{256}[/tex]

[tex]\sf \implies P(X=5)=\dfrac{7}{32}[/tex]

[tex]\sf \implies P(X=5)=0.21875[/tex]