Respuesta :

Answer:

[tex]\sf \theta=\dfrac34 \ radians=42.97 \textdegree \ (nearest \ hundredth)[/tex]

Step-by-step explanation:

Formulae

[tex]\sf radius (r)=\dfrac12 d[/tex]

(where d is the diameter of a circle)

[tex]\sf arc \ length =r\theta[/tex]

(where r is the radius and [tex]\theta[/tex] is measured in radians)

Calculation

Given:

  • [tex]\sf radius (r)=\dfrac12 \cdot 8=4 \ mi[/tex]
  • arc length = 3 mi

Substituting these values into the formula for arc length:

[tex]\implies \sf 3 =4\theta[/tex]

[tex]\implies \sf \theta=\dfrac34 \ radians[/tex]

To convert radians to degrees use

[tex]\sf 1 \ rad \cdot \dfrac{180\texrdegree}{\pi}[/tex]

[tex]\implies \sf \dfrac34 \cdot \dfrac{180\texrdegree}{\pi}=42.97183463...\textdegree[/tex]

  • Radius=8/2=4mi
  • length of arc=l=3mi

Now

[tex]\\ \rm\rightarrowtail \theta=\dfrac{l}{r}[/tex]

[tex]\\ \rm\rightarrowtail l=r\theta[/tex]

[tex]\\ \rm\rightarrowtail 3=4\theta[/tex]

[tex]\\ \rm\rightarrowtail \theta=\dfrac{3}{4}^c[/tex]