Respuesta :

Given :

  • The length of a rectangle is thrice it's breadth.
  • The perimeter of the rectangle is 88.

To Find :

The Length and breadth of the rectangle.

Solution :

We know that,

[tex]\qquad{ \bold{ \pmb{2(Length + Breadth ) = Perimeter_{(rectangle)}}}}[/tex]

Let's assume the breadth of the rectangle as x cm. Then the length will become 3x.

Now, Substituting the given values in the formula :

[tex]\qquad \dashrightarrow{ \sf{2(x + 3x )= 88}}[/tex]

[tex]\qquad \dashrightarrow{ \sf{2(4x)= 88}}[/tex]

[tex]\qquad \dashrightarrow{ \sf{8x= 88}}[/tex]

Dividing 8 by both sides :

[tex]\qquad \dashrightarrow{ \sf{ \dfrac{8x}{8} = \dfrac{88}{8} }}[/tex]

[tex]\qquad \dashrightarrow{ \bf{x= 11}}[/tex]

Therefore,

[tex]\qquad { \pmb{ \bf{ Breadth _{(rectangle)} = 11}}}\:[/tex]

[tex]\qquad { \pmb{ \bf{ Length _{(rectangle)} = 3 \times 11 \: = 33}}}\:[/tex]