Given :
⠀
To Find :
The Length and breadth of the rectangle.
⠀
Solution :
We know that,
[tex]\qquad{ \bold{ \pmb{2(Length + Breadth ) = Perimeter_{(rectangle)}}}}[/tex]
⠀
Let's assume the breadth of the rectangle as x cm. Then the length will become 3x.
⠀
Now, Substituting the given values in the formula :
[tex]\qquad \dashrightarrow{ \sf{2(x + 3x )= 88}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{2(4x)= 88}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{8x= 88}}[/tex]
Dividing 8 by both sides :
[tex]\qquad \dashrightarrow{ \sf{ \dfrac{8x}{8} = \dfrac{88}{8} }}[/tex]
[tex]\qquad \dashrightarrow{ \bf{x= 11}}[/tex]
⠀
Therefore,
[tex]\qquad { \pmb{ \bf{ Breadth _{(rectangle)} = 11}}}\:[/tex]
[tex]\qquad { \pmb{ \bf{ Length _{(rectangle)} = 3 \times 11 \: = 33}}}\:[/tex]