Respuesta :

Answer:

  • 1

Step-by-step explanation:

Substitute:

  • [tex]x^{0.5} = y[/tex]

Then the expression becomes:

  • [tex](\dfrac{1+y^3}{1-y+y^2}-y) \dfrac{1-y^2}{1-y} -y=\\[/tex]
  • [tex](\dfrac{(1+y)(1-y+y^2)}{1-y+y^2}-y) \dfrac{(1-y)(1+y)}{1-y} -y=[/tex]
  • [tex](1+y-y)(1+y)-y=[/tex]
  • [tex]1(1+y)-y=[/tex]
  • [tex]1+y-y=[/tex]
  • 1

The result is 1 regardless the value of x other than 1.