#14 write a linear equation in slope intercept form that passes through the points (-11,-5) and (1,2) find m then plug into point slope formula distribute then solve for y

Answer:
Step-by-step explanation:
slope formula: [tex]\frac{y2-y1}{x2-x1}[/tex]
: [tex]\frac{-2--5}{1--11}[/tex]
: [tex]\frac{1}{4}[/tex] ............this is our slope, m.
using y - y1 = m ( x - x1 )
⇒ y - 2 = [tex]\frac{1}{4}[/tex] ( x - 1 )
⇒ [tex]y =[/tex] [tex]\frac{x}{4}[/tex] + [tex]\frac{7}{4}[/tex]
Answer:
[tex]y=\frac{1}{4}x - \frac{9}{4}[/tex]
Step-by-step explanation:
[tex]m= \frac{y2-y1}{x2-x1}[/tex]
So, plug in (-11,-5) and (1,-2),
[tex]m=\frac{(-2) - (-5)}{1-(-11)}[/tex]
Subtract,
[tex]m=\frac{3}{12}[/tex]
Divide 3 by 12:
[tex]m=\frac{3}{12} = .25[/tex] or [tex]\frac{1}{4}[/tex]
The slope is .25 or [tex]\frac{1}{4}[/tex]
So, the equation so far is:
[tex]y=\frac{1}{4} x + b[/tex]
Now, we have to find the y-intercept.
[tex]y=\frac{1}{4}x+b[/tex]
Substitute the x for 1 and -2 in place of y.
[tex]-2=\frac{1}{4}(1) +b[/tex]
Now solve.
[tex]-2=\frac{1}{4}(1) +b\\-2=\frac{1}{4} +b\\-\frac{1}{4} -\frac{1}{4} \\\\-2\frac{1}{4} =b[/tex]
the y-intercept is: [tex]-2\frac{1}{4}[/tex] or [tex]-\frac{9}{4}[/tex]
The full equation is : [tex]y=\frac{1}{4}x - \frac{9}{4}[/tex]
Hope this helps! Brainliest would be much appreciated! Have a great day! :)