Respuesta :

Answer:

[tex]\huge\boxed{\sf 3m^2+5m}[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{3\sqrt{m^5} +5\sqrt{m^3} }{\sqrt{m} } \\\\We \ can \ write \ it \ as\\\\= \frac{3\sqrt{m^2*m^2*m} +5\sqrt{m^2*m} }{\sqrt{m} } \\\\= \frac{3\sqrt{m^2}*\sqrt{m^2} *\sqrt{m} +5\sqrt{m^2}*\sqrt{m} }{\sqrt{m} } \\\\= \frac{3(m)(m)\sqrt{m} +5(m)\sqrt{m} }{\sqrt{m} } \\\\take \ \sqrt{m} \ common\\\\= \frac{\sqrt{m}(3m^2+5m) }{\sqrt{m} } \\\\= \boxed{3m^2+5m}\\\\\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Answer:

3m² + 5m

Step-by-step explanation:

Using the rule of radicals

[tex]\frac{\sqrt{a} }{\sqrt{b} }[/tex] ⇔ [tex]\sqrt{\frac{a}{b} }[/tex]

Divide each term on the numerator by [tex]\sqrt{m}[/tex]

[tex]\frac{3\sqrt{m^5} }{\sqrt{m} }[/tex] + [tex]\frac{5\sqrt{m^3} }{\sqrt{m} }[/tex]

= 3 × [tex]\sqrt{\frac{m^5}{m} }[/tex] + 5 × [tex]\sqrt{\frac{m^3}{m} }[/tex]

= 3 × [tex]\sqrt{m^4}[/tex] + 5 × [tex]\sqrt{m^2}[/tex]

= 3 × m² + 5 × m

= 3m² + 5m