Respuesta :

Answer:

[tex]a_{n}[/tex] = [tex](-\frac{2}{3}) ^{n-1}[/tex]

Step-by-step explanation:

The sequence has a common ratio between consecutive terms , that is

r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{a_{3} }{a_{2} }[/tex] = [tex]\frac{a_{4} }{a_{3} }[/tex] = - [tex]\frac{2}{3}[/tex]

This indicates the sequence is geometric with nth term

[tex]a_{n}[/tex] = a₁ [tex](r)^{n-1}[/tex]

where a₁ is the first term

Here a₁ = 1 and r = - [tex]\frac{2}{3}[/tex] , then

[tex]a_{n}[/tex] = 1 [tex](-\frac{2}{3}) ^{n-1}[/tex] = [tex](-\frac{2}{3}) ^{n-1}[/tex]