Respuesta :

Answer:

The proof of area is [tex]\frac{3\sqrt{3} }{2} (p^{2}-1)x^{2}[/tex] is done

Step-by-step explanation:

Area of regular hexagon[tex]=6\times[/tex] Area of equilateral triangle

Area of regular hexagon ABCDEF with side [tex]x[/tex]

[tex]=6\times \frac{\sqrt{3} }{4} x^{2} \\\\= \frac{3\sqrt{3} }{2} x^{2}[/tex]

Area of regular hexagon FGHIJK with side [tex]px[/tex]

[tex]= \frac{3\sqrt{3} }{2} (px)^{2}\\\\=\frac{3\sqrt{3} }{2} p^{2}x^{2}[/tex]

Area of shaded region

[tex]=\frac{3\sqrt{3} }{2} p^{2}x^{2}-\frac{3\sqrt{3} }{2} x^{2}\\\\=\frac{3\sqrt{3} }{2} (p^{2}-1)x^{2}[/tex]