A chemical engineer must be able to predict the changes in chemical concentration in a reaction. dC/dt = -kCn where C is chemical concentration and k is rate constant. Order of reaction is the value of n. The first order reaction that combines tert-butyl bromide and water to produce tert-butyl alcohol and hydrogen bromide is shown below; (CH3)3CBr + H2O  (CH3)3COH +HBr From the experimental data, k was estimated to be k = 0.0537 (h -1 ). Determine concentration after 1 hour, if C(0) = 0.2 mol/L

Respuesta :

Answer:

Explanation:

Consider the general chemical reaction

                                                       [tex]\mathrm{A} \ \overset{k}{\longrightarrow} \ \mathrm{product}[/tex]  .

If [A] is the concentration of A (reactant) at any time t and n is the reaction order for the whole equation, the rate is then related to the concentration of reactant A with the following differential form of equation

                                               [tex]Rate \ = \ -\displaystyle\frac{d[\mathrm{A}]}{dt} \ = \ k[\mathrm{A}]^{n}[/tex]  .

where k is the rate constant.

*Note that the differential term [tex]\displaystyle\frac{d[\mathrm{A}]}{dt}[/tex] has a negative sign to denote that the concentration of A is decreasing over time t.

Since the chemical reaction between tert-butyl bromide and water is given to be a first-order reaction, hence n = 1, and the resulting differential equation becomes

                                        [tex]Rate \ = \ -\displaystyle\frac{d[\mathrm{A}]}{dt} \ = \ k[\mathrm{A}]^{1} \ = \ k[\mathrm{A}][/tex]

To solve this first-order linear homogenous differential equation, the method of separation of variables can be used.

[tex]\-\hspace{1cm} \displaystyle\frac{d[\mathrm{A}]}{dt} \ = -\ k[\mathrm{A}] \\ \\ \-\hspace{0.5cm} \displaystyle\frac{1}{[\mathrm{A}]} \, d[\mathrm{A}] \ = -\ k \, dt \\ \\ \int\ {\displaystyle\frac{1}{[\mathrm{A}]} \, d[\mathrm{A}] \ = \ -\int {k} \, {dt}[/tex]

         [tex]\ln{[\mathrm{A}]} \ = \ -kt \ + \ C \\ \\ \-\hspace{0.45cm} $[A]$ \ = \ e^{-kt \ + \ C} \\ \\ \-\hspace{0.45cm} $[A]$ \ = \ e^{-kt}e^{C} \ \ \ \ \ \ \ \ \ (e^{a \ + \ b} \ = \ e^{a}e^{b} \ \ \ \mathrm{by \ the \ law \ of \ indices})[/tex]

Since the term [tex]e^{C}[/tex] is a constant, let [tex]\alpha \ = \ e^{C}[/tex], hence [tex][\mathrm{A}] \ = \ \alpha e^{-kt}[/tex] or [tex]C \ = \ \alpha e^{-kt}[/tex] according to the question. Given that the initial concentration (t = 0) of tert-butyl bromide is 0.2 mol/L and k = 0.0537[tex]\mathrm{h^{-1}}[/tex], so

[tex]0.2 \ = \ \alpha e^{-0.0537 \ \times \ 0} \\ \\ 0.2 \ = \ \alpha \ \ \ \ \ (e^{0} \ = \ 1)[/tex]

Therefore, the rate equation is [tex]C \ = \ 0.2e^{-0.0537t}[/tex].

The concentration of tert-butyl alcohol after 1 hour is

[tex]C \ = \ 0.2e^{-0.0537 \ \times \ 1} \\ \\ C \ = \ 0.2e^{-0.0537} \\ \\ C \ = \ 0.190 \ \mathrm{mol/L} \ \ \ (3 \ \ \mathrm{s.f.})[/tex]