Respuesta :
Transformation involves changing the form of the function
The transformation that is not performed is (a) vertical shift
The function is given as:
[tex]\mathbf{y = cot(x)}[/tex]
From the complete question, the transformed function is:
[tex]\mathbf{y=3cot[\frac 15(x+2)]}[/tex]
On y = cot(x); start by translating the function 2 units left.
The rule of this transformation is:
[tex]\mathbf{(x,y) \to (x +2,y)}[/tex]
So, we have:
[tex]\mathbf{y = cot(x + 2)}[/tex]
Next, stretch the function horizontally by a factor of 1/5
The rule of this transformation is:
[tex]\mathbf{(x,y) \to (\frac 15x,y)}[/tex]
So, we have:
[tex]\mathbf{y=cot[\frac 15(x+2)]}[/tex]
Lastly, stretch the function vertically by a factor of 3
The rule of this transformation is:
[tex]\mathbf{(x,y) \to (x,3y)}[/tex]
So, we have:
[tex]\mathbf{y=3cot[\frac 15(x+2)]}[/tex]
From the above transformations, we have:
- Horizontal shift
- Vertical stretch
- Horizontal stretch
Hence, the transformation that is not performed is (a) vertical shift
Read more about transformations at:
https://brainly.com/question/13801312