Which expressions have a value that is greater than 1?

Answer:
Im not sure about A but other then that B and D have greater values then one
Step-by-step explanation:
[tex]~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \boxed{A}\qquad \cfrac{3^{-2}}{3^3}\implies \cfrac{~~\frac{1}{3^2} ~~}{3^3}\implies \cfrac{~~\frac{1}{3^2} ~~}{\cfrac{3^3}{1}}\implies \cfrac{1}{3^3\cdot 3^2}\implies \cfrac{1}{3^5}\implies \cfrac{1}{243}\qquad \textit{\large \checkmark}[/tex]
[tex]\boxed{B}\qquad \cfrac{5^3}{5^2}\implies 5^3\cdot 5^{-2}\implies 5^{3-2}\implies 5^1\implies 5\qquad \bigotimes \\\\\\ \boxed{C}\qquad 9^0\implies 1\qquad \bigotimes \\\\\\ \boxed{D}\qquad \cfrac{(2^3)^2}{2^2}\implies \cfrac{2^{3\cdot 2}}{2^2}\implies \cfrac{2^6}{2^2}\implies 2^6\cdot 2^{-2}\implies 2^4\implies 16\qquad \textit{\large \checkmark} \\\\\\ \boxed{E}\qquad \cfrac{2^3}{2^8}\implies 2^3\cdot 2^{-8}\implies 2^{3-8}\implies 2^{-5}\implies \cfrac{1}{2^5}\implies \cfrac{1}{32}\qquad \bigotimes[/tex]