Respuesta :

Answer:

[tex]\frac{1}{108}[/tex]

Step-by-step explanation:

Using the rules of exponents

[tex]a^{\frac{m}{n} }[/tex] = [tex]\sqrt[n]{a^m}[/tex]

[tex]a^{-m}[/tex] = [tex]\frac{1}{a^m}[/tex]

[tex]a^{\frac{1}{3} }[/tex] × [tex]b^{-\frac{3}{2} }[/tex] ← substitute a = 8 and b = 36

= [tex]8^{\frac{1}{3} }[/tex] × [tex]36^{-\frac{3}{2} }[/tex]

= [tex]\sqrt[3]{8}[/tex] × [tex]\frac{1}{36^{\frac{3}{2} } }[/tex]

= 2 × [tex]\frac{1}{(\sqrt{36})^3 }[/tex]

= 2 [tex]\frac{1}{6^3}[/tex]

= 2 × [tex]\frac{1}{216}[/tex]

= [tex]\frac{1}{108}[/tex]