Pablo generates the function f(x)=3/2(5/2)exp x-1 to determine the xth number in a sequence. Which is an equivalent representation? a) f(x=1)=5/2f(x) b) f(x)=5/2f(x=1) c) f(x=1)=3/2f(x) d) f(x)=3/2f(x=1)

Respuesta :

Assuming the function is [tex]f(x)=\dfrac32\left(\dfrac52\right)^{x-1}[/tex], you can define an equivalent recursive function as

[tex]f(x)=\dfrac32\left(\dfrac52\right)^{x-1}=\dfrac32\times\dfrac52\left(\dfrac52\right)^{x-2}=\dfrac52f(x-1)[/tex]

Answer:

f(x + 1) = Five-halvesf(x)

Step-by-step explanation:

Pablo generates the function f (x) = three-halves (five-halves) Superscript x minus 1 to determine the xth number in a sequence and the formula is  f(x + 1) = Five-halvesf(x)