Respuesta :
Assuming the function is [tex]f(x)=\dfrac32\left(\dfrac52\right)^{x-1}[/tex], you can define an equivalent recursive function as
[tex]f(x)=\dfrac32\left(\dfrac52\right)^{x-1}=\dfrac32\times\dfrac52\left(\dfrac52\right)^{x-2}=\dfrac52f(x-1)[/tex]
[tex]f(x)=\dfrac32\left(\dfrac52\right)^{x-1}=\dfrac32\times\dfrac52\left(\dfrac52\right)^{x-2}=\dfrac52f(x-1)[/tex]
Answer:
f(x + 1) = Five-halvesf(x)
Step-by-step explanation:
Pablo generates the function f (x) = three-halves (five-halves) Superscript x minus 1 to determine the xth number in a sequence and the formula is f(x + 1) = Five-halvesf(x)