Respuesta :
The answer is 34.05
The total distance (D) is the sum of three distances (d1, d2, and d3).
The distance formula is [tex]d = \sqrt{(x2-x1)^{2} +(y2-y1)^{2}} [/tex]
Distance 1: Phoenix (–12, –16) to Blythe (–20, –9):
[tex]d1 = \sqrt{(-20-(-12))^{2} +(-9-(-16))^{2}} =\sqrt{(-20+12)^{2} +(-9+16)^{2}} \\ =\sqrt{(-8)^{2} +(7)^{2}}= \sqrt{64+49} = \sqrt{113}= 10.63[/tex]
Distance 2: Blythe (–20, –9) to Los Angeles (–33, –4):
[tex]d2 = \sqrt{(-33-(-20))^{2} +(-4-(-9))^{2}} =\sqrt{(-33+20)^{2} +(-4+9)^{2}} \\ =\sqrt{(-13)^{2} +(5)^{2}}= \sqrt{169+25} = \sqrt{194}= 13.93[/tex]
Distance 3: Los Angeles (–33, –4) to San Francisco (–36, 5)
[tex]d3 = \sqrt{(-36-(-33))^{2} +(5-(-4))^{2}} =\sqrt{(-36+33)^{2} +(5+4)^{2}} \\ =\sqrt{(-3)^{2} +(9)^{2}}= \sqrt{9+81} = \sqrt{90}= 9.49[/tex]
D = d1 + d2 + d3 = 10.63 + 13.93 + 9.49 = 34.05
The total distance (D) is the sum of three distances (d1, d2, and d3).
The distance formula is [tex]d = \sqrt{(x2-x1)^{2} +(y2-y1)^{2}} [/tex]
Distance 1: Phoenix (–12, –16) to Blythe (–20, –9):
[tex]d1 = \sqrt{(-20-(-12))^{2} +(-9-(-16))^{2}} =\sqrt{(-20+12)^{2} +(-9+16)^{2}} \\ =\sqrt{(-8)^{2} +(7)^{2}}= \sqrt{64+49} = \sqrt{113}= 10.63[/tex]
Distance 2: Blythe (–20, –9) to Los Angeles (–33, –4):
[tex]d2 = \sqrt{(-33-(-20))^{2} +(-4-(-9))^{2}} =\sqrt{(-33+20)^{2} +(-4+9)^{2}} \\ =\sqrt{(-13)^{2} +(5)^{2}}= \sqrt{169+25} = \sqrt{194}= 13.93[/tex]
Distance 3: Los Angeles (–33, –4) to San Francisco (–36, 5)
[tex]d3 = \sqrt{(-36-(-33))^{2} +(5-(-4))^{2}} =\sqrt{(-36+33)^{2} +(5+4)^{2}} \\ =\sqrt{(-3)^{2} +(9)^{2}}= \sqrt{9+81} = \sqrt{90}= 9.49[/tex]
D = d1 + d2 + d3 = 10.63 + 13.93 + 9.49 = 34.05