Simplify and express each of the following in exponential form:
(1). 2³× 3⁴×4/3×32
(2). {(5²)³×5⁴}÷5⁷
(3). 25⁴×5³
(4). 3×7²×11⁸/21×11³
(5). 3⁷/3⁴×3³
(6). 2⁰+3⁰+4⁰
(7). 2⁰×3⁰×4⁰
(8). (3⁰+2⁹)×5⁰
(9). 2⁸×a⁵/4³×a³
(10). (a⁵/a³)×a⁸
(11). 4⁵×a⁸b³/4⁵×a⁵b²
(12). (2³×2)²
Thankyou!​

Simplify and express each of the following in exponential form1 2 343322 5553 2554 371121115 3336 2347 2348 3259 2a4a10 aaa11 4ab4ab12 22Thankyou class=

Respuesta :

Step-by-step explanation:

[tex] \bf \underline{➤ Answer\: (1)-} \\ [/tex]

[tex]{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times 4}{3 \times 32}}[/tex]

Convert all of them into exponents and powers form.

[tex]{\tt \longrightarrow \dfrac{{2}^{3} \times {3}^{4} \times {2}^{2}}{{3}^{1} \times {2}^{5}}}[/tex]

Simplify each of them...

[tex]{\tt \longrightarrow \dfrac{{2}^{3 + 2} \times {3}^{4}}{{3}^{1} \times {2}^{5}} = \dfrac{{2}^{5} \times {3}^{4}}{{3}^{1} \times {2}^{5}}}[/tex]

[tex]{\tt \longrightarrow {2}^{5 - 5} \times {3}^{4 - 1} = {2}^{0} \times {3}^{3}} [/tex]

[tex]{\tt \longrightarrow {3}^{3}} [/tex]

[tex] \bf \underline{➤ Answer\: (2)-} \\ [/tex]

[tex]{\tt \longrightarrow \bigg(( {5}^{2} {)}^{3} \times {5}^{4} \bigg) \div {5}^{7}} [/tex]

[tex]{\tt \longrightarrow \bigg({5}^{2 \times 3}\times {5}^{4} \bigg) \div {5}^{7}} [/tex]

[tex]{\tt \longrightarrow {5}^{6 + 4} \div {5}^{7} = {5}^{10} \div {5}^{7}} [/tex]

[tex]{\tt \longrightarrow {5}^{10 - 7}}[/tex]

[tex]{\tt \longrightarrow {5}^{3}}[/tex]

[tex] \bf \underline{➤ Answer\: (3)-} \\ [/tex]

[tex]{\tt \longrightarrow {25}^{4} \times {5}^{3}}[/tex]

[tex]{\tt \longrightarrow ( {5}^{2})^{4} \times {5}^{3} = {5}^{2 \times 4} \times {5}^{3}}[/tex]

[tex]{\tt \longrightarrow {5}^{8} \times {5}^{3} = {5}^{8 + 3}}[/tex]

[tex]{\tt \longrightarrow {5}^{11}}[/tex]

[tex] \bf \underline{➤ Answer\: (4)-} \\ [/tex]

[tex]\tt \longrightarrow \dfrac{3 \times {7}^{2} \times {11}^{8}}{21 \times {11}^{3}} [/tex]

[tex]\tt \longrightarrow \dfrac{{3}^{1} \times {7}^{2} \times {11}^{8}}{ {7}^{1} \times {3}^{1} \times {11}^{3}} [/tex]

[tex]{\tt \longrightarrow {3}^{1 - 1} \times {7}^{2 - 1} \times {11}^{8 - 3}}[/tex]

[tex]{\tt \longrightarrow {3}^{0} \times {7}^{1} \times {11}^{5}}[/tex]

[tex]{\tt \longrightarrow {7}^{1} \times {11}^{5}}[/tex]

[tex] \bf \underline{➤ Answer\: (5)-} \\ [/tex]

[tex]\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4} \times {3}^{3}} [/tex]

[tex]\tt \longrightarrow \dfrac{{3}^{7}}{ {3}^{4 + 3}} = \dfrac{{3}^{7}}{{3}^{7}} [/tex]

[tex]\tt \longrightarrow {3}^{7 - 7}[/tex]

[tex]\tt \longrightarrow {3}^{0}[/tex]

[tex] \bf \underline{➤ Answer\: (6)-} \\ [/tex]

[tex]{\tt \longrightarrow {2}^{0} + {3}^{0} + {4}^{0}} [/tex]

[tex]{\tt \longrightarrow 1 + 1 + 1 = 3} [/tex]

[tex]{\tt \longrightarrow {3}^{1}} [/tex]

[tex] \bf \underline{➤ Answer\: (7)-} \\ [/tex]

[tex]{\tt \longrightarrow {2}^{0} \times {3}^{0} \times {4}^{0}} [/tex]

[tex]{\tt \longrightarrow 1 \times 1 \times 1 = 1} [/tex]

[tex]{\tt \longrightarrow {1}^{1}} [/tex]

[tex] \bf \underline{➤ Answer\: (8)-} \\ [/tex]

[tex]{\tt \longrightarrow ({3}^{0} + {2}^{0}) \times {5}^{0}} [/tex]

[tex]{\tt \longrightarrow (1 + 1) \times 1 = 2 \times 1} [/tex]

[tex]{\tt \longrightarrow {2}^{1}}[/tex]

[tex] \bf \underline{➤ Answer\: (9)-} \\ [/tex]

[tex]\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{4}^{3} \times {a}^{3}} [/tex]

[tex]\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{( {2}^{2}{)}^{3} \times {a}^{3}} [/tex]

[tex]\tt \longrightarrow \dfrac{{2}^{8} \times {a}^{5}}{{2}^{2 \times 3} \times {a}^{3}} = \dfrac{{2}^{8} \times {a}^{5}}{{2}^{6} \times {a}^{3}} [/tex]

[tex]\tt \longrightarrow {2}^{8 - 6} \times {a}^{5 - 3}[/tex]

[tex]\tt \longrightarrow {2}^{2} \times {a}^{2}[/tex]

[tex] \bf \underline{➤ Answer\: (10)-} \\ [/tex]

[tex]{\tt \longrightarrow \bigg(\dfrac{{a}^{5}}{{a}^{3}} \bigg) \times {a}^{8}}[/tex]

[tex]{\tt \longrightarrow {a}^{5 - 3} \times {a}^{8}}[/tex]

[tex]{\tt \longrightarrow {a}^{2} \times {a}^{8} = {a}^{2 + 8}}[/tex]

[tex]{\tt \longrightarrow {a}^{10}}[/tex]

[tex] \bf \underline{➤ Answer\: (11)-} \\ [/tex]

[tex]{\tt \longrightarrow \dfrac{{4}^{5} \times {a}^{8} \: {b}^{3}}{{4}^{5} \times {a}^{5} \: {b}^{2}}}[/tex]

[tex]{\tt \longrightarrow {4}^{5 - 5} \times {a}^{8 - 5} \times {b}^{3 - 2}}[/tex]

[tex]{\tt \longrightarrow {4}^{0} \times {a}^{3} \times {b}^{1}} [/tex]

[tex]{\tt \longrightarrow {a}^{3} \times {b}^{1}} [/tex]

[tex] \bf \underline{➤ Answer\: (12)-} \\ [/tex]

[tex]{\tt \longrightarrow \bigg( {2}^{3} \times 2 \bigg)^{2}}[/tex]

[tex]{\tt \longrightarrow \bigg( {2}^{3 + 1}\bigg)^{2} = {2}^{4 \times 2}}[/tex]

[tex]{\tt \longrightarrow {2}^{8}}[/tex]

━━━━━━━━━━━━━━━━━━━━━

[tex] \bf \underline{Used \:Laws\: of \:Intergal\:Exponents-} \\ [/tex]

[tex]{\to \sf {a}^{m} \times {a}^{n} = {a}^{m + n}}[/tex]

[tex]{\to \sf {a}^{m} \div {a}^{n} = {a}^{m - n}}[/tex]

[tex]{\to \sf \bigg( {a}^{m} \bigg)^{n} = {a}^{m \times n}}[/tex]

[tex]{\to \sf \dfrac{ {a}^{m}}{ {b}^{m}} = \bigg( {\dfrac{a}{b}}\bigg)^{m}}[/tex]

[tex]{\to \sf {a}^{0} = 1}[/tex][tex]{\to \sf {a}^{ - 1} = \dfrac{1}{a}}[/tex]

[tex]\textsf{Hope this helps!!}\\[/tex]