Respuesta :
Answer:
[tex] \bf \sqrt{15\pi \: cm} \approx 6,86468 [/tex]
Step-by-step explanation:
r² = Vπ ÷ t
r² = 180π cm ÷ 12 cm
[tex] \sf r = \sqrt{ \frac{180\pi \: cm}{12 \: cm } } [/tex]
[tex] \sf r = \sqrt{15\pi \: cm} \approx 6,86468 [/tex]
Conclusion:
The length of the radius of the cylinder is [tex] \bf \sqrt{15\pi \: cm} \approx 6,86468 [/tex].
[tex]\\ \sf\longmapsto \pi r^2h=108\pi[/tex]
[tex]\\ \sf\longmapsto r^2h=108[/tex]
[tex]\\ \sf\longmapsto 12r^2=108[/tex]
[tex]\\ \sf\longmapsto r^2=\dfarac{108}{12}[/tex]
[tex]\\ \sf\longmapsto r^2=9[/tex]
[tex]\\ \sf\longmapsto r=\sqrt{9}[/tex]
[tex]\\ \sf\longmapsto r=3[/tex]
- Radius is 3cm