The volume of a cylinder is 108π cm and its height is 12 cm.

What is the length of the cylinder's radius?

Enter your answer in the box.
cm

Respuesta :

Answer:

[tex] \bf \sqrt{15\pi \: cm} \approx 6,86468 [/tex]

Step-by-step explanation:

r² = Vπ ÷ t

r² = 180π cm ÷ 12 cm

[tex] \sf r = \sqrt{ \frac{180\pi \: cm}{12 \: cm } } [/tex]

[tex] \sf r = \sqrt{15\pi \: cm} \approx 6,86468 [/tex]

Conclusion:

The length of the radius of the cylinder is [tex] \bf \sqrt{15\pi \: cm} \approx 6,86468 [/tex].

[tex]\\ \sf\longmapsto \pi r^2h=108\pi[/tex]

[tex]\\ \sf\longmapsto r^2h=108[/tex]

[tex]\\ \sf\longmapsto 12r^2=108[/tex]

[tex]\\ \sf\longmapsto r^2=\dfarac{108}{12}[/tex]

[tex]\\ \sf\longmapsto r^2=9[/tex]

[tex]\\ \sf\longmapsto r=\sqrt{9}[/tex]

[tex]\\ \sf\longmapsto r=3[/tex]

  • Radius is 3cm