the time period of an oscillating body is T how will the time of the period vibrating body change if the value of G is decreased by 9 times

Respuesta :

[tex]\\ \sf\longmapsto T_1=2\pi \sqrt{\dfrac{m}{g}}[/tex]

  • g be x

[tex]\\ \sf\longmapsto T_1=2\pi \sqrt{\dfrac{m}{x}}[/tex]

  • G be 9x

[tex]\\ \sf\longmapsto T_2=2\pi \sqrt{\dfrac{m}{G}}[/tex]

[tex]\\ \sf\longmapsto T_2=2\pi \sqrt{\dfrac{m}{9x}}[/tex]

Now

[tex]\\ \sf\longmapsto \dfrac{T_1}{T_2}=\dfrac{2\pi \sqrt{\dfrac{m}{x}}}{2\pi \sqrt{\dfrac{m}{9x}}}[/tex]

[tex]\\ \sf\longmapsto \dfrac{T_1}{T_2}=\dfrac{1}{9}[/tex]

[tex]\\ \sf\longmapsto T_1:T_2=1:9[/tex]

The time period will increase by 9 times