1. (5pts) Find the derivatives of the function using the definition of derivative.


1. Differentiate each of the following functions. (Do not use the product rule and quotient rule.)

1 5pts Find the derivatives of the function using the definition of derivative 1 Differentiate each of the following functions Do not use the product rule and q class=

Respuesta :

2.8.1

[tex]f(x) = \dfrac4{\sqrt{3-x}}[/tex]

By definition of the derivative,

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h)-f(x)}{h}[/tex]

We have

[tex]f(x+h) = \dfrac4{\sqrt{3-(x+h)}}[/tex]

and

[tex]f(x+h)-f(x) = \dfrac4{\sqrt{3-(x+h)}} - \dfrac4{\sqrt{3-x}}[/tex]

Combine these fractions into one with a common denominator:

[tex]f(x+h)-f(x) = \dfrac{4\sqrt{3-x} - 4\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}}[/tex]

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

[tex]f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x} - 4\sqrt{3-(x+h)}\right)\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x}\right)^2 - \left(4\sqrt{3-(x+h)}\right)^2}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16(3-x) - 16(3-(x+h))}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16h}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}[/tex]

Now divide this by h and take the limit as h approaches 0 :

[tex]\dfrac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ \displaystyle \lim_{h\to0}\frac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-x}\left(4\sqrt{3-x} + 4\sqrt{3-x}\right)} \\\\ \implies f'(x) = \dfrac{16}{4\left(\sqrt{3-x}\right)^3} = \boxed{\dfrac4{(3-x)^{3/2}}}[/tex]

3.1.1.

[tex]f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3[/tex]

Differentiate one term at a time:

• power rule

[tex]\left(4x^5\right)' = 4\left(x^5\right)' = 4\cdot5x^4 = 20x^4[/tex]

[tex]\left(\dfrac1{4x^2}\right)' = \dfrac14\left(x^{-2}\right)' = \dfrac14\cdot-2x^{-3} = -\dfrac1{2x^3}[/tex]

[tex]\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}[/tex]

The last two terms are constant, so their derivatives are both zero.

So you end up with

[tex]f'(x) = \boxed{20x^4 + \dfrac1{2x^3} + \dfrac1{3x^{2/3}}}[/tex]