The figure shows two triangles on the coordinate grid:

A coordinate grid is shown from positive 6 to negative 6 on the x-axis and from positive 6 to negative 6 on the y-axis. A triangle ABC is shown with vertex A on ordered pair negative 4, negative 1, vertex B on ordered pair negative 3, negative 1 and vertex C on ordered pair negative 4, negative 4. Another triangle A prime B prime C prime is shown with vertex A prime on ordered pair negative 1, 1, vertex B prime on ordered pair negative 2, 1, and vertex C prime on ordered pair negative 1, 4.

What set of transformations is performed on triangle ABC to form triangle A'B'C'?

A translation 5 units up, followed by a 270-degree counterclockwise rotation about the origin
A 270-degree counterclockwise rotation about the origin, followed by a translation 5 units up
A 180-degree counterclockwise rotation about the origin, followed by a translation 5 units to the right
A translation 5 units to the right, followed by a 180-degree counterclockwise rotation about the origin

Respuesta :

The correct statement is "A translation [tex]5[/tex] units to the right, followed by a [tex]180[/tex]-degree counterclockwise rotation about the origin"

[tex]A=(-4,-1), B=(-3,-1), C=(-4,-4)[/tex]

[tex]A'=(-1,1), B'=(-2,1), C'=(-1,1)[/tex]

Option A:  

[tex]A=(-4,-1)[/tex]

Translate [tex]5[/tex] units up, we get [tex](-4,-1+5)=(-4,4)[/tex].

When rotating a point [tex]270[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(y,-x)[/tex].

So, [tex]270[/tex]-degree counterclockwise rotation about the origin will give [tex](4,4)[/tex].

This is not equal to [tex](-1,1)[/tex].

So, this option is incorrect.

Option B:  

[tex]A=(-4,-1)[/tex]

When rotating a point [tex]270[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(y,-x)[/tex].

So, [tex]270[/tex]-degree counterclockwise rotation about the origin will give [tex](-1,4)[/tex].

Now, translating [tex]5[/tex] units up, we get [tex](-1,4+5)=(-1,9)[/tex]

This is not equal to [tex](-1,1)[/tex].

So, this option is incorrect.

Option C:  

[tex]A=(-4,-1)[/tex]

When rotating a point [tex]180[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(-x,-y).[/tex]

So, [tex]180[/tex]-degree counterclockwise rotation about the origin will give [tex](4,1)[/tex].

Now, translating [tex]5[/tex] units right, we get [tex](4+5,1)=(9,1)[/tex]

This is not equal to [tex](-1,1)[/tex].

So, this option is incorrect.

Option D:  

[tex]A=(-4,-1)[/tex]

Translate [tex]5[/tex] units right, we get [tex](-4+5,-1)=(1,-1).[/tex]

When rotating a point [tex]180[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(-x,-y).[/tex]

So, [tex]180[/tex]-degree counterclockwise rotation about the origin will give [tex](-1,1)[/tex].

This is equal to [tex](-1,1)[/tex].

So, this option is correct.

Learn more about translation and rotation here:

https://brainly.com/question/15577335?referrer=searchResults

Ver imagen kobenhavn