Respuesta :
The correct statement is "A translation [tex]5[/tex] units to the right, followed by a [tex]180[/tex]-degree counterclockwise rotation about the origin"
[tex]A=(-4,-1), B=(-3,-1), C=(-4,-4)[/tex]
[tex]A'=(-1,1), B'=(-2,1), C'=(-1,1)[/tex]
Option A:
[tex]A=(-4,-1)[/tex]
Translate [tex]5[/tex] units up, we get [tex](-4,-1+5)=(-4,4)[/tex].
When rotating a point [tex]270[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(y,-x)[/tex].
So, [tex]270[/tex]-degree counterclockwise rotation about the origin will give [tex](4,4)[/tex].
This is not equal to [tex](-1,1)[/tex].
So, this option is incorrect.
Option B:
[tex]A=(-4,-1)[/tex]
When rotating a point [tex]270[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(y,-x)[/tex].
So, [tex]270[/tex]-degree counterclockwise rotation about the origin will give [tex](-1,4)[/tex].
Now, translating [tex]5[/tex] units up, we get [tex](-1,4+5)=(-1,9)[/tex]
This is not equal to [tex](-1,1)[/tex].
So, this option is incorrect.
Option C:
[tex]A=(-4,-1)[/tex]
When rotating a point [tex]180[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(-x,-y).[/tex]
So, [tex]180[/tex]-degree counterclockwise rotation about the origin will give [tex](4,1)[/tex].
Now, translating [tex]5[/tex] units right, we get [tex](4+5,1)=(9,1)[/tex]
This is not equal to [tex](-1,1)[/tex].
So, this option is incorrect.
Option D:
[tex]A=(-4,-1)[/tex]
Translate [tex]5[/tex] units right, we get [tex](-4+5,-1)=(1,-1).[/tex]
When rotating a point [tex]180[/tex] degrees counterclockwise about the origin our point [tex]A(x,y)[/tex] becomes [tex]A'(-x,-y).[/tex]
So, [tex]180[/tex]-degree counterclockwise rotation about the origin will give [tex](-1,1)[/tex].
This is equal to [tex](-1,1)[/tex].
So, this option is correct.
Learn more about translation and rotation here:
https://brainly.com/question/15577335?referrer=searchResults
