Evaluate the limit of sequence:
[tex] \displaystyle \large{ \lim_{n \to \infty} \frac{ \sqrt{n + 3} - \sqrt{n} }{ \sqrt{n + 1} - \sqrt{n} } }[/tex]
Please show your work too — thanks in advance!​

Respuesta :

Rationalize both the numerator and denominator. Given

[tex]\dfrac{\sqrt a-\sqrt b}{\sqrt c-\sqrt d}[/tex]

we can rationalize it by introducing conjugates of the numerator and denominator:

[tex]\dfrac{\sqrt a-\sqrt b}{\sqrt c-\sqrt d} \cdot \dfrac{\sqrt a+\sqrt b}{\sqrt a+\sqrt b} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt c+\sqrt d} \\\\ = \dfrac{\left(\sqrt a\right)^2 - \left(\sqrt b\right)^2}{\left(\sqrt c\right)^2-\left(\sqrt d\right)^2} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt a + \sqrt b} \\\\ = \dfrac{a-b}{c-d} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt a + \sqrt b}[/tex]

Then the limit is equivalent to

[tex]\displaystyle \lim_{n\to\infty} \frac{(n+3)-n}{(n+1)-n} \cdot \dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n} = 3 \lim_{n\to\infty} \dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n}[/tex]

For the remaining expression, divide through uniformly by [tex]\sqrt n[/tex]:

[tex]\dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n} = \dfrac{\sqrt{1+\frac1n} + 1}{\sqrt{1+\frac3n}+1}[/tex]

As n goes to infinity, the remaining terms containing n converge to 0, leaving

[tex]\dfrac{\sqrt{1}+1}{\sqrt1+1} = \dfrac22 = 1[/tex]

making the overall limit 3.