Respuesta :

9514 1404 393

Answer:

  a) J(K(x)) = x; K(J(x)) = x; functions are inverses

  b) f(g(x)) = 8 -x; g(f(x)) = -x; functions are not inverses

  c) f(x) = 4 -x; f^-1(x) = 4 -x. g(x) = x -4; g^-1(x) = x +4

Step-by-step explanation:

a) Substitute for the function argument in the usual way. If the functions are inverses, their composite is the identity function.

  J(K(x)) = J(1/3x -2) = 3(1/3x -2) +6 = x -6 +6 = x . . . . functions are inverses

  K(J(x)) = K(3x +6) = 1/3(3x +6) -2 = x +2 -2 = x . . . . functions are inverses

__

b) f(g(x)) = f(x -4) = 4 -(x -4) = 4 -x +4 = 8 -x . . . . functions are not inverses

  g(f(x)) = g(4 -x) = (4 -x) -4 = -x . . . . functions are not inverses

__

c) To find the inverse function for y = f(x), solve x = f(y).

The inverse of f(x) = 4 -x is ...

  x = f(y) = 4 -y

  y = 4 -x . . . . . add y-x to both sides

  f^-1(x) = 4 -x

and for g(x) = x -4, the inverse is ...

  x = g(y) = y -4

  x +4 = y

  g^-1(x) = x +4