Respuesta :
Answer: x < 2
Step-by-step explanation:
Given expression
2 (8x - 4) - 2x < 4x + 12
Expand parentheses and apply the distributive property
16x - 8 - 2x < 4x + 12
Combine like terms
(16x - 2x) - 8 < 4x + 12
14x - 8 < 4x + 12
Add 8 on both sides
14x - 8 + 8 < 4x + 12 + 8
14x < 4x + 20
Subtract 4x on both sides
14x - 4x < 4x + 20 - 4x
10x < 20
Divide 10 on both sides
10x / 10 < 20 / 10
[tex]\boxed{x<2}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
[tex] \fbox { \fbox{Solution}}[/tex]
Given
[tex]2(8x-4)-2x < 4x+12[/tex]
Solving The Equation
[tex]16x-8-2x < 4x+12[/tex]
Solving The Like Terms
[tex]16x-2x-8 < 4x+12[/tex]
[tex]= 14x-8 < 4x+12[/tex]
Adding 8 in both sides
[tex]= 14x-8+8 < 4x+12+8[/tex]
[tex]= 14x < 4x+20[/tex]
Bringing 4x To Left side
[tex]= 14x-4x < 20[/tex]
[tex]= 10x < 20[/tex]
[tex] = 10x < 20 \\ \\ = x < \frac{20}{10} \\ \\ = x < \cancel \frac{20}{10} \\ \\ = x < 2[/tex]