Respuesta :
Answer:
[tex] = x_{1} = \frac{1 - \sqrt{65} }{4} . x_{2} = \frac{1 + \sqrt{65} }{4} [/tex]
Step-by-step explanation:
[tex]2x ^{2} - x - 8 = 0[/tex]
[tex]x = \frac{ - ( - 1)± \sqrt{( - 1 {)}^{2} } - 4 \times 2 \times ( - 8)}{2 \times 2} [/tex]
[tex]x = \frac{1± \sqrt{1 + 64} }{4} [/tex]
[tex]x = \frac{1± \sqrt{65} }{4} [/tex]
[tex] = x_{1} = \frac{1 - \sqrt{65} }{4} . x_{2} = \frac{1 + \sqrt{65} }{4} [/tex]
Answer:
[tex]x=\frac{-1+-\sqrt{65}}{4}[/tex]
Step-by-step explanation:
Using the quadratic formula,
[tex]x=\frac{-b+-\sqrt{b^{2}-4ac}}{2a}\\x=\frac{-1+-\sqrt{-1^{2}+64}}{4}\\x=\frac{1+-\sqrt{65}}{4}\\[/tex]