Respuesta :

Answer:

c³ + 24c² + 192c + 512

Step-by-step explanation:

(c + 8)³

= (c + 8)(c + 8)(c + 8) ← expand last 2 factors using FOIL

= (c + 8)(c² + 16c + 64)

Multiply each term in the second factor by each term in the first factor

c(c² + 16c + 64) + 8(c² + 16c + 64) ← distribute parenthesis

= c³ + 16c² + 64c + 8c² + 128c + 512 ← collect like terms

= c³ + 24c² + 192c + 512

Answer:

[tex]c^{3} + 24 {c}^{2} + 192c + 512 [/tex]

Step-by-step explanation:

Expand the expression

[tex](c + 8)(c + 8)(c + 8) \\ = {c}^{3} + 3 {c}^{2} \times 8 + 3c \times {8}^{2} + {8}^{3} \\ = {c}^{3} + 24 {c}^{2} 3c \times 64 + 512 \\ = {c}^{3} + 24 {c}^{2} + 192c + 512[/tex]