Rayna is building a tapered staircase using wooden boards. The bottom stair is 3 1/2 ft wide, and the top stair is 2 1/6 ft wide. Each stair is 4 in. Shorter than the one below. What is the total length of wooden boards rayna needs for the stair tops, in feet? Enter your answer as an improper fraction.

Respuesta :

   Sum of an arithmetic sequence is defined by the formula,

[tex]T_n=\frac{n}{2}[2a+(n-1)d][/tex]

Total length of the wooden boards will be [tex]14\frac{1}{6}[/tex] feet.

    It's given in the question,

  • Width of the bottom stair = [tex]3\frac{1}{2}[/tex] feet
  • Width of the top stair = [tex]2\frac{1}{6}[/tex] feet
  • Each stair is 4 inch shorter than the one below.

Since, 1 inch = [tex]\frac{1}{12}[/tex] feet

Therefore, [tex]4[/tex] inch = [tex]\frac{4}{12}[/tex] feet

                             = [tex]\frac{1}{3}[/tex] feet

So, each stair is [tex]\frac{1}{3}[/tex] feet shorter than one below.

Now the sequence formed will be,

[tex]\frac{7}{2},[\frac{7}{2}-\frac{1}{3}],[\frac{7}{2}-\frac{2}{3}],......\frac{13}{6}[/tex]

[tex]\frac{21}{6},\frac{19}{6},\frac{17}{6}....\frac{13}{6}[/tex]

It's an Arithmetic sequence with common difference 'd' = [tex]-\frac{1}{3}[/tex] and first term 'a' = [tex]\frac{7}{2}[/tex] and nth term [tex]T_n=\frac{13}{6}[/tex]

If there are 'n' stairs, expression for the for the top stair of the arithmetic sequence will be,

[tex]T_n=a+(n-1)d[/tex]

[tex]\frac{13}{6}=\frac{21}{6}+(n-1)(-\frac{1}{3})[/tex]

[tex]\frac{13}{6}-\frac{21}{6}=-(n-1)\frac{1}{3}[/tex]

[tex]\frac{8}{6}=(n-1)\frac{1}{3}[/tex]

[tex]\frac{4}{3}=(n-1)\frac{1}{3}[/tex]

[tex](n-1)=4[/tex]

[tex]n=5[/tex]

Therefore, there are 5 stairs.

Now total length of the wooden boards = Sum of 5 terms of the sequence

                                                                    = [tex]\frac{n}{2}[2a+(n-1)(d)][/tex]

                                                                    = [tex]\frac{5}{2}[2(\frac{21}{6})+(5-1)(-\frac{1}{3})][/tex]

                                                                    = [tex]\frac{5}{2}[\frac{21}{3}-\frac{4}{3}][/tex]

                                                                    = [tex]\frac{17}{3}\times \frac{5}{2}[/tex]

                                                                    = [tex]\frac{85}{6}[/tex]

                                                                    = [tex]14\frac{1}{6}[/tex] ft

    Therefore, total length of the wooden boards will be [tex]14\frac{1}{6}[/tex] ft.

Learn more,

https://brainly.com/question/16235564