Respuesta :

Step-by-step explanation:

[tex] \sin(60 - \theta) \sin(60 + \theta) \\ = \{ \sin(60) \cos( \theta) - \sin( \theta) \cos(60) \} \{ \sin(60) \cos( \theta) + \cos(60) \sin( \theta) \} \\ = \{ \frac{ \sqrt{3} }{2} \cos( \theta) - \frac{1}{2} \sin( \theta) \} \{ \frac{ \sqrt{3} }{2} \cos( \theta) + \frac{1}{2} \sin( \theta) \} \\ \\ [/tex]

from difference of two squares:

[tex]{ \boxed{(a - b)(a + b) = ( {a}^{2} - {b}^{2} ) }}[/tex]

therefore:

[tex] = \{ {( \frac{ \sqrt{3} }{2}) }^{2} { \cos }^{2} \theta \} - \{ {( \frac{ \sqrt{3} }{2} )}^{2} { \sin }^{2} \theta \} \\ \\ = \frac{3}{4} { \cos }^{2} \theta - \frac{3}{4} { \sin}^{2} \theta[/tex]

factorise out ¾ :

[tex] = \frac{3}{4} ( { \cos }^{2} \theta - { \sin}^{2} \theta) \\ \\ = { \boxed{ \frac{3}{4} \cos(2 \theta) }}[/tex]