Respuesta :
[tex]\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)[/tex]
Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives
[tex]\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)[/tex]
This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as
[tex]\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}[/tex]
Now recall two well-known limits:
[tex]\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0[/tex]
Compute each remaining limit:
[tex]\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23[/tex]
[tex]\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23[/tex]
[tex]\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13[/tex]
[tex]\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13[/tex]
[tex]\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0[/tex]
So, the original limit has a value of
2/3 + 2/3 + 1/3 + 1/3 - 0 = 2