Use coordinate notation to enter the rule that maps each preimage to its image. Then identify the transformation and confirm that it preserves length and angle measure.

S (−3, 4) arrowright S′ (−2, 2)
T (3, 4) arrowright T′ (4, 2)
U (−1, 0) arrowright U′ (0, −2)


The transformation is a
(select)
given by the rule: (x, y)= ____


Since ST =
(select)
, SU =
(select)
, and TU =
(select)
, the transformation preserves length.

Since mangleS =
(select)
, mangleT =
(select)
, and mangleU =
(select)
, the transformation preserves angle measure.

Respuesta :

In geometry, transformations are used to move points from one position to another.

  • The transformation is a rigid transformation given by [tex](x,y) \to (x + 1, y-2)[/tex].
  • It preserves lengths and angles

The preimage is given as:

[tex]S =(-3,4)[/tex]

[tex]T = (3,4)[/tex]

[tex]U = (-1,0)[/tex]

The image is given as:

[tex]S' = (-2,2)[/tex]

[tex]T' =(4,2)[/tex]

[tex]U' = (0,-2)[/tex]

Using points S and S' as our reference point, we have:

[tex]S =(-3,4)[/tex] and [tex]S' = (-2,2)[/tex]

Calculate transformation

[tex](x,y) \to S -S'[/tex]

[tex](x,y) \to (-2,2)-(-3,4)[/tex]

Rewrite as:

[tex](x,y) \to (-2--3,2-4)[/tex]

[tex](x,y) \to (-2+3,2-4)[/tex]

[tex](x,y) \to (1,-2)[/tex]

So, the transformation from the preimage to image is:

[tex](x,y) \to (x + 1, y-2)[/tex]

Calculate the lengths of the sides of the preimage and the image

Using the following distance formula, we have:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

So, we have:

[tex]ST = \sqrt{(-3 - 3)^2 + (4 - 4)^2} = 6[/tex]

[tex]SU = \sqrt{(-3 - -1)^2 + (4 - 0)^2} = \sqrt{20[/tex]

[tex]TU = \sqrt{(3 - -1)^2 + (4 - 0)^2} = \sqrt{32[/tex]

and

[tex]S'T' = \sqrt{(-2 - 4)^2 + (2 - 2)^2} = 6[/tex]

[tex]S'U' = \sqrt{(-2 - 0)^2 + (2 -- 2)^2} = \sqrt{20[/tex]

[tex]T'U' = \sqrt{(4 -0)^2 + (2 -- 2)^2} = \sqrt{32[/tex]

Since

[tex]ST = S'T'= 6[/tex]

[tex]SU = S'U'= \sqrt{20[/tex]

and

[tex]TU = T'U'= \sqrt{32[/tex]

Then, the transformation preserves length

From the graph of [tex]\triangle STU[/tex] and [tex]\triangle S'T'U'[/tex]

Since

[tex]\angle S = \angle S' = 76^o[/tex]

[tex]\angle T = \angle T' = 45^o[/tex]

[tex]\angle U = \angle U' = 59^o[/tex]

Then, the transformation preserves angle measure.

Read more about transformation at:

https://brainly.com/question/12865301