Respuesta :
Answer:
[tex] \boxed{d = 120\: meters} [/tex]
Explanation:
Given:
- [tex] v_{0} [/tex] = 8.0 m/s
- [tex] v [/tex] = 16.0 m/s
- [tex] t [/tex] = 10 seconds
- [tex] d [/tex] = ?
We can use this equation with the variables given to solve:
[tex] d \: = \frac{t \: (v + v_{0})}{2}[/tex] →
[tex] d \: = \frac{(10s) \: ((16.0 \: m/s) + (8.0 \: m/s))}{2} [/tex] →
[tex] d \: = \frac{(10s) \: (24 \: m/s)}{2} [/tex] →
[tex] d \: = \frac{(10 \: s \: • \: 24 \: m/s)}{2} [/tex] →
[tex] d \: = \frac{240 \: m}{2} [/tex] →
[tex] d \: = 120 \: m [/tex]
The distance traveled by the object in 10 seconds is 120 meters.
Given to us,
Final velocity of the object, [tex]v= 16\ meter/sec[/tex]
Initial velocity of the object, [tex]u= 8\ meter/sec[/tex]
Time for traveling, [tex]t= 10\ sec[/tex]
Using the first equation of motion, we can find out acceleration of the object [tex]a[/tex],
[tex]v=u+at\\16=8+a\times 10\\a= 0.8\ meter/sec^2[/tex]
Now using the second equation of motion and putting the value of [tex]a[/tex],
The distance[tex](S)[/tex] traveled by the object ,
[tex]\begin{aligned}S&= ut+\frac{1}{2}at^2\\&= 8\times 10+ \frac{1}{2}\times 0.8\times 10^2\\&= 120\ meters \\\end{aligned}[/tex]
Hence,The distance traveled by the object in 10 seconds is 120 meters.
For more information, visit:
https://brainly.com/question/8898885