Respuesta :

Answer:

It has two roots

that is 2.4i and -2.4i

Step-by-step explanation:

[tex]f(x) = ( {x}^{2} + 6) {}^{2} [/tex]

for a root, f(x) is zero

[tex] {( {x}^{2} + 6)}^{2} = 0 \\ ( {x}^{2} + 6) = 0[/tex]

subtract 6 from both sides:

[tex]( {x}^{2} + 6) - 6 = 0 - 6 \\ {x}^{2} = - 6[/tex]

remember: from complex numbers, i² is -1

[tex] {x}^{2} = 6 {i}^{2} [/tex]

take square root on both sides:

[tex] \sqrt{ {x}^{2} } = \sqrt{ {6i}^{2} } \\ x = i \sqrt{6} \\ x = + 2.4i \: \: and \: \: - 2.4i[/tex]