Respuesta :
Answer:
Hello,
a) -6
b) -39
c) 102
Step-by-step explanation:
I suppose this are sequence arithemical or geometrical
[tex]a)\\u_1=-14\\u_2=x\\u_3=-6\\u_4=y\\u_5=2\\u_6=z\\u_7=10\\\\We\ see\ that\ :\\u_3-u_1=-6-(-14)=-6+14=8\\u_5-u_3=2-(-6)=2+6=8\\u_7-u_5=10-2=8\\\\We\ may \imagine\ that\ the\ difference\ bethween\ 2\ terms\ is\ =8/2=4\\\\so\ x=-10, y=-2, z=6 \ and\ x+y+z=-10+(-2)+6=-6\\[/tex]
[tex]b)\\u_1=x\\u_2=-2\\u_3=4\\u_4=y\\u_5=16\\u_6=z\\u_7=64\\\\We\ see\ that\ :\\\\\dfrac{u_5}{u_3}=\dfrac{16}{4} =4\\\dfrac{u_8}{u_6}=\dfrac{64}{16} =4\\\dfrac{u_3}{u_2}=\dfrac{4}{-2} =-2\\\\The\ common\ factor\ is\ -2\\\\u_1=x=\dfrac{u_2}{-2} =1\\\\u_4=y=\dfrac{u_5}{-2} =-8\\\\u_6=z=\dfrac{u_7}{-2} =-32\\x+y+z=1+(-8)+(-32)=-39\\[/tex]
c)
All those numbers are divisor of 3*4*5=60
x=12, y=30, z=60
x+y+z=12+30+60=102