Answer:
The appropriate answer is "256".
Step-by-step explanation:
Given:
Standard error,
SE = 128.13
Standard deviation,
[tex]\sigma[/tex] = $2050
As we know,
⇒ [tex]SE = \frac{\sigma}{\sqrt{n} }[/tex]
or,
⇒ [tex]\sqrt{n}= \frac{\sigma}{SE}[/tex]
By substituting the values, we get
[tex]=\frac{2050}{128.13}[/tex]
[tex]=\frac{205000}{12813}[/tex]
[tex]n = (\frac{205000}{12813} )^2[/tex]
[tex]=255.98[/tex]
or,
[tex]=256[/tex]