Suppose the following data represent the ratings (on a scale from 1 to 5) for a certain smart phone game, with 1 representing a poor rating. The discrete probability distribution for the random variable x is given below:

Star Frequency
1 2140
2 2853
3 4734
4 4880
5 10,715

Required:
Construct a discrete probability distribution for the random variable X

Respuesta :

Answer:

[tex]\begin{array}{cc}{Status} & {Probability} & {1} & {0.0845} & {2} & {0.1127} & {3} & {0.1870} & {4} & {0.1927}& {5} & {0.4231} \ \end{array}[/tex]

Step-by-step explanation:

Given

The above table

Required

The discrete probability distribution

The probability of each is calculated as:

[tex]Pr = \frac{Frequency}{Total}[/tex]

Where:

[tex]Total = 2140+ 2853 + 4734 + 4880 + 10715[/tex]

[tex]Total = 25322[/tex]

So, we have:

[tex]P(1) = \frac{2140}{25322} = 0.0845[/tex]

[tex]P(2) = \frac{2853}{25322} = 0.1127[/tex]

[tex]P(3) = \frac{4734}{25322} = 0.1870[/tex]

[tex]P(4) = \frac{4880}{25322} = 0.1927[/tex]

[tex]P(5) = \frac{10715}{25322} = 0.4231[/tex]

So, the discrete probability distribution is:

[tex]\begin{array}{cc}{Status} & {Probability} & {1} & {0.0845} & {2} & {0.1127} & {3} & {0.1870} & {4} & {0.1927}& {5} & {0.4231} \ \end{array}[/tex]