At a time hours after taking a tablet, the rate at which a drug is being eliminated r(t)= 50 (e^-01t - e^-0.20t)is mg/hr. Assuming that all the drug is eventually eliminated, calculate the original dose.

Respuesta :

Answer:

2500 mg

Step-by-step explanation:

Since r(t) is the rate at which the drug is being eliminated, we integrate r(t) with t from 0 to ∞ to find the original dose of drug, m. Since all of the drug will be eliminated at time t = ∞.

Since r(t) =  50 (e^-01t - e^-0.20t)

m = ∫₀⁰⁰50 (e^-01t - e^-0.20t)

= 50∫₀⁰⁰(e^-01t - e^-0.20t)

= 50[∫₀⁰⁰e^-01t - ∫₀⁰⁰e^-0.20t]

= 50([e^-01t/-0.01]₀⁰⁰ - [e^-0.20t/-0.02]₀⁰⁰)

= 50(1/-0.01[e^-01(∞) - e^-01(0)] - {1/-0.02[e^-0.02(∞) - e^-0.02(0)]})

= 50(1/-0.01[e^-(∞) - e^-(0)] - {1/-0.02[e^-(∞) - e^-(0)]})

= 50(1/-0.01[0 - 1] - {1/-0.02[0 - 1]})

= 50(1/-0.01[- 1] - {1/-0.02[- 1]})

= 50(1/0.01 - 1/0.02)

= 50(100 - 50)

= 50(50)

= 2500 mg