Respuesta :

Answer:

m is 2

Step-by-step explanation:

[tex]{ \tt{ \sqrt{150} - \sqrt{12}m + \sqrt{54} = 0 }} \\ { \tt{ \sqrt{12}m } = \sqrt{150} - \sqrt{54} } \\ { \tt{ (\sqrt{4 \times 3}) m = ( \sqrt{25 \times 6} ) - ( \sqrt{9 \times 6}) }} \\ { \tt{( \sqrt{4 \times 3} )m = 5 \sqrt{6} - 3 \sqrt{6} }} \\ { \tt{2 \sqrt{3}m = 5 \sqrt{6} - 3 \sqrt{6} }} \\ { \tt{2 \sqrt{3} m = 2 \sqrt{6} }} \\ { \tt{ \sqrt{3} m = \sqrt{6} }} \\ { \tt{ \sqrt{3} m = ( \sqrt{3} \times \sqrt{2} ) }} \\ { \tt{m = \sqrt{2} }}[/tex]