Respuesta :

Given:

The given figure of a right triangle.

To find:

The length of PQ.

Solution:

In a right triangle,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

In right triangle QRS,

[tex]\tan S=\dfrac{QR}{RS}[/tex]

[tex]\tan (31+12)^\circ=\dfrac{QR}{6.3}[/tex]

[tex]\tan 43^\circ=\dfrac{QR}{6.3}[/tex]

[tex]0.932515\times 6.3=QR[/tex]

[tex]5.8748445=QR[/tex]

In right triangle PRS,

[tex]\tan PSR=\dfrac{PR}{RS}[/tex]

[tex]\tan 31^\circ=\dfrac{PR}{6.3}[/tex]

[tex]0.60086\times 6.3=PR[/tex]

[tex]3.785418=PR[/tex]

Now,

[tex]PQ=QR-PR[/tex]

[tex]PQ=5.8748445-3.785418[/tex]

[tex]PQ=2.0894265[/tex]

[tex]PQ\approx 2[/tex]

Therefore, the measure of PQ is 2 cm.