Respuesta :

Given:

[tex]Domain\neq -1[/tex]

[tex]Range\neq 2[/tex]

To find:

The function for the given domain and range.

Solution:

A function is not defined for some values that makes the denominator equals to 0.

The denominator of functions in option A and C is [tex](x-1)[/tex].

[tex]x-1=0[/tex]

[tex]x=1[/tex]

So, the functions in option A and C are not defined for [tex]x=1[/tex] but defined for [tex]x=-1[/tex]. Therefore, the options A and C are incorrect.

In option B, the denominator is equal to [tex]x+1[/tex].

[tex]x+1=0[/tex]

[tex]x=-1[/tex]

So, the function is not defined for [tex]x=-1[/tex]. Thus, [tex]Domain\neq -1[/tex].

If degree of numerator and denominator are equal then the horizontal asymptote is [tex]y=\dfrac{a}{b}[/tex], where a is the leading coefficient of numerator and b is the leading coefficient of denominator.

In option B, the leading coefficient of numerator is 2 and the leading coefficient of denominator is 1. So, the horizontal asymptote is:

[tex]y=\dfrac{2}{1}[/tex]

[tex]y=2[/tex]

It means, the value of the function cannot be 2 at any point. So, [tex]Range\neq 2[/tex].

Hence, option B is correct.