Respuesta :

Answer:

[tex]e^{\frac{1}{5}x} = \sum\limits^{\infty}_{k=0} \frac{1}{5}^k \cdot \frac{x^k}{k!}[/tex]

Step-by-step explanation:

Poorly formatted question.

The given parameters can be summarized as:

[tex]e^x = \sum\limits^{\infty}_{k=0} \frac{x^k}{k!}[/tex] ----- the series

Required

Determine [tex]e^\frac{1}{5}^x[/tex]

We have:

[tex]e^x = \sum\limits^{\infty}_{k=0} \frac{x^k}{k!}[/tex]

Substitute [tex]\frac{1}{5}x[/tex] for x

[tex]e^{\frac{1}{5}x} = \sum\limits^{\infty}_{k=0} \frac{(\frac{1}{5}x)^k}{k!}[/tex]

Split

[tex]e^{\frac{1}{5}x} = \sum\limits^{\infty}_{k=0} \frac{1}{5}^k \cdot \frac{x^k}{k!}[/tex]