Respuesta :
Answer:
[tex]log_5 \ 125 = 3[/tex]
Step-by-step explanation:
[tex]log_5 \ 125 = log_2 \ 5^3 = 3 \times log_5 \ 5 = 3 \times 1 = 3[/tex]
The value of [tex]$\log _{5} 125$[/tex] can be estimated utilizing the logarithm rule. The value of [tex]$\log _{5} 125$[/tex] exists 3.
What is a logarithm?
The logarithm stands for the inverse function of exponentiation. In logarithm base must be raised to yield a given number for an exponent.
Given:
[tex]$\log _{5} 125$[/tex]
Estimate the value of the given logarithm, we get
[tex]$\log _{5} 125=\log _{5}(5)^{3}$[/tex]
[tex]$\log _{5} 125=3 \log _{5} 5$[/tex]
From logarithm rule [tex]$\log m^{n}=n \log m$[/tex], we get
[tex]$\log _{5} 125=3 \times 1$[/tex]
[tex]$\log _{5} 125=3$[/tex]
Therefore, the value of [tex]$\log _{5} 125$[/tex] is 3.
To learn more about logarithm
https://brainly.com/question/26240264
#SPJ2