Answer:
The committee of 8 members can be selected in 990,675 different ways.
Step-by-step explanation:
The order in which the teachers and the students are chosen is not important, which means that the combinations formula is used to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
4 teachers from a set of 6.
4 students from a set of 37.
Then
[tex]T = C_{6,4}C_{37,4} = \frac{6!}{4!2!} \times \frac{37!}{4!33!} = 990675[/tex]
The committee of 8 members can be selected in 990,675 different ways.